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Summary

� Furanocoumarins (FCs) are plant-specialized metabolites with potent allelochemical proper-

ties. The distribution of FCs is scattered with a chemotaxonomical tendency towards four dis-

tant families with highly similar FC pathways. The mechanism by which this pathway

emerged and spread in plants has not been elucidated.
� Furanocoumarin biosynthesis was investigated in Ficus carica (fig, Moraceae), focusing on

the first committed reaction catalysed by an umbelliferone dimethylallyltransferase (UDT).

Comparative RNA-seq analysis among latexes of different fig organs led to the identification

of a UDT. The phylogenetic relationship of this UDT to previously reported Apiaceae UDTs

was evaluated.
� The expression pattern of F. carica prenyltransferase 1 (FcPT1) was related to the FC con-

tents in different latexes. Enzymatic characterization demonstrated that one of the main func-

tions of FcPT1 is UDT activity. Phylogenetic analysis suggested that FcPT1 and Apiaceae

UDTs are derived from distinct ancestors, although they both belong to the UbiA superfamily.

These findings are supported by significant differences in the related gene structures.
� This report describes the identification of FcPT1 involved in FC biosynthesis in fig and pro-

vides new insights into multiple origins of the FC pathway and, more broadly, into the adapta-

tion of plants to their environments.

Introduction

Furanocoumarins (FCs) are a group of plant-specialized metabo-
lites, consisting of over 200 derivatives to date. FCs have been
classified into two distinct subgroups, linear and angular, based
on the positions of the furan ring associated with the coumarin
core structure (Seiger, 1998; Bourgaud et al., 2006, 2014). These
molecules contribute to plant chemical defences, mainly against
biotic stresses, such as herbivores and pathogens (Bourgaud et al.,
2014), and are also a key element in the arms race between Api-
aceae and Lepidopteran insects (Berenbaum & Feeny, 1981).
FCs show a scattered distribution in angiosperms, with a chemo-
taxonomical tendency towards four distant plant families: Api-
aceae, Fabaceae, Moraceae and Rutaceae (Supporting
Information Fig. S1) (Murray et al., 1982). These families
include medicinally and agronomically important species, such as
Apiaceae herbs and citrus plants, in which these metabolites are

generally considered as pharmaceutical and toxic constituents
(Bourgaud et al., 2014; Dugrand-Judek et al., 2015).

The FC biosynthetic pathway was initially investigated by
feeding experiments with radiolabelled chemicals and isolation of
intermediate compounds (Brown & Steck, 1973; Murray et al.,
1982). These studies indicated that the major FC-producing
families synthesize psoralen, the linear FC core structure, through
similar pathways, although this route has not been fully assessed
in Fabaceae. In the linear FC pathway, umbelliferone, a common
coumarin derivative in angiosperms, is first dimethylallylated to
yield demethylsuberosin (DMS, 6-dimethylallylumbelliferone),
which is subsequently converted to psoralen via marmesin
(Fig. 1). Angelicin, representing the angular FC backbone, is also
synthesized from umbelliferone through an analogous pathway
(Fig. 1). Angular FCs have a more restricted taxonomical distri-
bution than linear FCs, with most angular FCs being detected in
Apiaceae species (Berenbaum & Feeny, 1981). Moreover,
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angular FCs are thought to have appeared later than linear FCs
in the course of Apiaceae evolution (Ma et al., 1994; Larbat et al.,
2009). The intermediates in angular FC biosynthesis, osthenol
(8-dimethylallylumbelliferone) and columbianetin, have also
been isolated from a Rutaceae species that accumulates angelicin
(Fig. 1) (Filippini et al., 1998). Hence, like linear FCs, the
biosynthetic reaction steps required for various angular FCs
among different unrelated plant taxa may be identical. The com-
mon routes leading to the synthesis of FC core structures among
taxonomically distant plant families suggest two alternative
hypotheses for the emergence of this metabolite group: the devel-
opment of the pathway in a common ancestor followed by its loss
in many descendant taxa; or the independent emergence of a
common FC biosynthetic pathway.

Most studies assessing the molecular characterization of FC
biosynthesis were performed in Apiaceae species (Bourgaud et al.,
2006, 2014), which led to the identification of a series of FC
biosynthetic genes. Cytochrome P450 monooxygenases (P450s)
were described as being responsible for furan-ring formation;
genes encoding these enzymes include CYP71AJ1, which encodes
a psoralen synthase (PS) (Larbat et al., 2007), and CYP71AJ4,
which encodes an angelicin synthase (AS) (Larbat et al., 2009).
Other P450 genes involved in subsequent modifications of the
FC cores include CYP71AZ4, which encodes a psoralen 8-hy-
droxylase (Krieger et al., 2018), and CYP71AZ1/6, which
encodes a xanthotoxin 5-hydroxylase (Krieger et al., 2018). Ber-
gaptol 5-O-methyltransferases have also been reported to belong
to the SABATH superfamily (Hehmann et al., 2004; Ishikawa
et al., 2009; Zhao et al., 2016) (Fig. 1).

Particular attention has focused on the initial step in the FC
pathway, catalysed by an umbelliferone dimethylallyltransferase
(UDT). The regiospecific transfer performed by this enzyme of a
dimethylallyl moiety to the C6 or C8 of umbelliferone (U6DT
or U8DT reaction) enables entry into either the linear or the
angular FC pathway, respectively (Fig. 1) (Brown & Steck,
1973). Reports published in the 1970s showed that the native
U6DT activity in Ruta graveolens (Rutaceae) was associated with
chloroplast membranes and required divalent cations as cofactors
(Ellis & Brown, 1974; Dhillon & Brown, 1976). Recently, sev-
eral prenyltransferase (PT) genes involved in the synthesis of FCs
have been identified, and their gene products have been shown to
preferentially catalyse the U6DT or U8DT reaction (i.e. U6DT
encoded by Petroselinum crispum PT1 (PcPT1) and Pastinaca
sativa PT1 (PsPT1), and U8DT encoded by P. sativa PT2
(PsPT2)) (Karamat et al., 2014; Munakata et al., 2016). These
PTs all belong to the UbiA superfamily, a PT family of mem-
brane-bound proteins possessing two aspartate-rich motifs that
are conserved motifs crucial for the divalent cation-dependent
prenylation (Winkelblech et al., 2015). The Apiaceae UDTs are
shown to be localized to the plastids. These results suggest that
this first step of FC biosynthesis in different plant taxa is catal-
ysed by the same enzyme family.

To clarify the pattern of emergence of FCs in plants, this study
focused on the PT genes involved in the first step of FC biosynthe-
sis in fig (Ficus carica), a Moraceous plant that accumulates a large
quantity of linear FC derivatives in its laticifer cells (latexes)

(Zaynoun et al., 1984). Recently, -omics resources of this species
have been created (Mori et al., 2017; Kitajima et al., 2018),
including comparable RNA-seq libraries from latexes of different
fig organs (fruit, petiole, and trunk) (Kitajima et al., 2018). Tak-
ing advantage of individual gene expression profiles in these
libraries, we identified a fig U6DT and characterized the enzy-
matic properties of its encoded protein. The phylogenetic rela-
tionship of this UDT to previously reported Apiaceae UDTs was
also analysed.

Materials and Methods

Plant materials and reagents

Latexes (Fig. S2) were collected from five individual fig trees
maintained in the Center for Bioresource Field Science, Kyoto
Institute of Technology, Kyoto (Japan). A standard specimen of
DMS was purchased from Topharman (Shanghai, China).
Phenolic substrates and prenyl diphosphates were purchased
from Tokyo Chemical Industry Co., Ltd (Tokyo, Japan),
Extrasynthese (Lyon, France), Herboreal Ltd (Dalkeith, UK) and
Sigma-Aldrich. Dimethylallyl diphosphate (DMAPP) was also
generously provided by Dr Hirobumi Yamamoto (Toyo Univer-
sity, Japan) and used for preliminary analysis. Geranylgeranyl
diphosphate (GGPP) was generously provided by Dr Nathalie
Giglioli-Guivarc’h (Universit�e Franc�ois-Rabelais de Tours,
France).

Construction of an RNA-seq library from latexes of fig fruits

An RNA-seq library was prepared from latexes of fig fruits as pre-
viously described (Kitajima et al., 2018). The contig sequences
used in this study are shown in Fig. S3.

Isolation of FcPT genes and construction of plant
expression plasmids

Latexes collected from fig fruits were mixed with a 10-fold volume
of TRIzol reagent (Thermo Fisher Scientific, Waltham, MA,
USA) and frozen in liquid nitrogen. Total RNA was extracted as
described (Kitajima et al., 2012), and cDNA was synthesized with
SuperScript III First-Strand Synthesis Supermix (Invitrogen). The
nucleotide sequences containing the full coding sequences (CDSs)
of four FcPT genes were amplified by PCR using KOD-plus neo
or ver.2 (Toyobo, Osaka, Japan), the synthesized cDNA pool as a
template, and primer pairs for FcPT1a (FcPT1_50UTR_Fw and
FcPT1a_30UTR_Rv), FcPT1b (FcPT1_50UTR_Fw and
FcPT1b_30UTR_Rv), FcPT2a (FcPT2_50UTR_Fw and
FcPT2a_30UTR_Rv), and FcPT2b (FcPT2_50UTR_Fw and
FcPT2b_30UTR_Rv) (Table S1). The amplicons were inserted
into the pGEMT-easy vector (Promega) for sequencing.

The CDSs of FcPTs were further amplified by PCR using
KOD-plus neo or ver.2 and the primer pairs for FcPT1a/b
(FcPT1_TOPO_Fw and FcPT1_TOPO_Rv) and FcPT2a/b
(FcPT2_TOPO_Fw and FcPT2_TOPO_Rv) (Table S1), and
the PCR products were subsequently inserted into the
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pENTRTM/D-TOPO® vector (Invitrogen) by directional TOPO
reactions. The resulting entry vectors were subsequently intro-
duced into the pGWB502 binary vector by LR recombination
(Nakagawa et al., 2007), yielding pGWB502-FcPT constructs
possessing P35S-FcPT-Tnos. The pGWB505-FcPT1a/bTP con-
structs containing P35S-FcPT1a/bTP-synthetic green fluorescent
protein (sGFP)-Tnos for subcellular localization analysis were con-
structed by the same process using the pGWB505 vector (Naka-
gawa et al., 2007) and the primer pairs for amplification of the

nucleotide sequences encoding the first 72 and 70 amino acids of
FcPT1a and FcPT1b, respectively (FcPT1_TOPO_Fw and
FcPT1TP_Rv) (Table S1).

Transient expression of FcPTs in Nicotiana benthamiana
leaves and preparation of microsomes

Recombinant FcPT proteins were produced in N. benthamiana
leaves by agroinfiltration using the pBIN61-P19 plasmid, and
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Fig. 1 Simple coumarin and furanocoumarin (FC) biosynthetic pathways in plants. The FC pathways from p-coumaroyl-CoA to isopimpinellin (linear-type)
and angelicin (angular-type) via umbelliferone, a simple coumarin molecule serving as the common precursor for both FC types, are shown. Psoralen and
angelicin, highlighted in pale yellow, are the core skeleton structures of linear and angular FCs, respectively. Genetically characterized reaction steps are
marked according to their botanical origins: A, Apiaceae; C, Convolvulaceae, M, Moraceae (in this study); R, Rutaceae. Abbreviations for enzymes are as
follows: C20H, p-coumaroyl CoA 20-hydroxylase; U6DT, umbelliferone 6-dimethylallyltransferase; U8DT, umbelliferone 8-dimethylallyltransferase; MS,
marmesin synthase; CS, columbianetin synthase; PS, psoralen synthase; AS, angelicin synthase; P5H, psoralen 5-hydroxylase; P8H, psoralen 8-hydroxylase;
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microsomes were prepared from the leaves as previously described
(Voinnet et al., 2003; Karamat et al., 2014), except that the leaves
in this study were ground with mortar and pestle. Each microso-
mal fraction was suspended in 100 mM Tris-HCl buffer contain-
ing 1.0 mM dithiothreitol and stored at �80°C. The protein
concentrations of microsomes were quantified with a Qubit_2.0
fluorometer (Invitrogen) according to the manufacturer’s proto-
col.

In vitro PT assay

A standard mixture (200 µl) containing 200 µM prenyl acceptor
substrate, 200 µM prenyl donor substrate, 10 mM MgCl2, and
microsomes as crude enzymes (0.12 µg of total proteins) was
incubated at 28°C for 16 h, unless otherwise described. Enzy-
matic reactions were stopped by the addition of 100 µl of 3 M
HCl, and phenolic compounds were extracted with ethyl acetate
as previously described (Munakata et al., 2014).

LC/MS analysis of enzymatic products

Reaction products were analysed using a Shimadzu Nexera ultra-
high-performance LC-photodiode array (UHPLC-PDA) system
(Shimadzu, Kyoto, Japan) to assess the substrate specificity of
FcPT1a and the LC20A HPLC-PDA system (Shimadzu) for
other routine analyses. The UHPLC-PDA analysis was per-
formed essentially as described by Krieger et al. (2018). In the
prenyl donor specificity test, acetonitrile was used instead of
methanol as a solvent. For HPLC-PDA analysis, reaction prod-
ucts were separated on a C18 Interchim Vintage series (LR
RP18E 2509 4.0 mm, 5 µm; Interchim, Montluc�on, France)
column using a programme composed of an isocratic step of
10% (v/v) solvent B (methanol with 0.1% (v/v) formic acid) in
solvent A (MilliQ water with 0.1% (v/v) formic acid) over 0–
3 min and the following gradient step of 10% to 99% (v/v) over
3–34 min at room temperature and a flow rate of 0.7 ml min–1.
Reaction products were detected based on UV scans ranging
from 190 to 450 nm.

Reaction products were identified using an LC-MS/MS ‘LTQ
Orbitrap’ (Thermo Fisher Scientific) system. After chromato-
graphic separation similar to UHPLC analysis, the reaction prod-
ucts were ionized in electrospray ionization mode followed by
detection using a mass scan ranging from m/z 80 to 800.

Extraction and quantification of FCs from fig latexes

Fruits, petioles and trunks of fig trees were cut, and extruded
latex was collected. These latexes were immediately frozen in liq-
uid nitrogen and stored at –80°C. Following thawing, 30 mg of
latex was added to 300 µl of methanol, and the samples were vor-
texed at 2500 rpm at room temperature for 10 min. After cen-
trifugation at 20 400 g at room temperature for 5 min, the
supernatant fraction was collected. Next, the pellet was subjected
again to this extraction procedure. The two supernatant fractions
were combined and dried with nitrogen gas. The extract was dis-
solved in 500 µl of methanol and filtered through Minisart®

RC4 (0.2 mm pore; Sartorius Stedim Biotech, G€ottingen, Ger-
many). FCs in latex extracts were quantified with a D-2000 Elite
HPLC System (Hitachi, Tokyo, Japan) as previously described
(Munakata et al., 2014).

Quantitative RT-PCR

Total RNA pools were extracted from latexes of fig fruits, petioles
and trunks, as previously described (Kitajima et al., 2012), and
reverse-transcribed with ReverTra Ace® qPCR RT Master Mix
with gDNA Remover (Toyobo). The synthesized cDNA pools
were used as templates for quantitative reverse transcription
polymerase chain reaction (qRT-PCR) using Thunderbird®

SYBR® qPCR Mix (Toyobo), the FcPT1a/b primer pair
(FcPT1_qPCR_Fw and FcPT1_qPCR_Rv), and the primer pair
for FcActin (FcActin_qPCR_Fw and FcActin_qPCR_Rv) as a
reference gene (Ikegami et al., 2013) (Table S1). These PCRs
were conducted under the control of CFX96 Deep Well (Bio-
Rad) using an amplification programme consisting of initial
denaturation at 98°C for 2 min followed by 45 cycles of denatu-
ration at 98°C for 10 s, annealing at 55°C for 10 s, and elonga-
tion at 68°C for 30 s. Amplification of the target sequences was
confirmed by sequencing.

Transient expression of FcPT1TP-sGFP in N. benthamiana
leaves and microscopic observation

The FcPT1a/bTP-sGFP-expression constructs were introduced
into N. benthamiana leaves by agroinfiltration as previously
described (Karamat et al., 2014), except that the pBIN61-P19
vector was not used in this analysis. Forty-eight hours later, fluo-
rescence images of epidermal cells of the leaves were acquired
using a confocal laser scanning microscope (FV3000; Olympus,
Tokyo, Japan) with a 209 0.75 numerical aperture objective
(UPLSAPO 209; Olympus). The 488 nm line of a 20 mW
diode laser and an emission filter (bandpass 500–540 nm) were
used to detect the GFP fluorescence, and the 640 nm line of a 40
mW diode laser and an emission filter (bandpass 650–750 nm)
were used to detect Chl autofluorescence. The pHKN29 plasmid
containing P35S-sGFP-Tnos was used as a control for free sGFP
(Kumagai & Kouchi, 2003). The acquired images were processed
by FV31S-SW software (Olympus).

Sequencing of bacterial artificial chromosome (BAC) clones
containing PsPT1 and PsPT2

The previously reported genomic sequence of PsPT1 (Roselli
et al., 2017) was registered with the NCBI in this report. A
532 nucleotide sequence corresponding to PsPT2 was ampli-
fied from genomic DNA extracted from plant seedlings with
the E.Z.N.A. Plant DNA kit (Omega Bio-Tek, Norcross,
GA, USA) using PrimeSTAR Max DNA Polymerase
(Takara, Japan) and the primer pair (PsPT2_BAC_Fw and
PsPT2_BAC_Rv) (Table S1). This probe was used to screen
a parsnip BAC library, as described previously (Roselli et al.,
2017).
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In silico analyses

Contigs belonging to the UbiA superfamily in RNA-seq libraries
of fig latexes were screened by TBLASTN searching using BIOEDIT

software (http://www.mbio.ncsu.edu/BioEdit/bioedit.html).
Contigs homologous to FcPT1 were obtained from the RNA-seq
library of Ficus religiosa leaves available in OneKP (https://site
s.google.com/a/ualberta.ca/onekp/) (Johnson et al., 2012;
Matasci et al., 2014; Wickett et al., 2014; Xie et al., 2014).
BIOEDIT software was also used to calculate amino acid identities
among polypeptide sequences. The transmembrane regions and
the transit peptides of FcPTs were predicted by TMHMM SERVER
v.2.0 (http://www.cbs.dtu.dk/services/TMHMM/) and
CHLOROP (http://www.cbs.dtu.dk/services/ChloroP/), respec-
tively. Phylogenetic trees were constructed based on CLUSTALW
multiple alignments using MEGA7 (http://www.megasoftware.ne
t/). Genomic sequences were obtained from NCBI (https://www.
ncbi.nlm.nih.gov/), PHYTOZOME v.12.1.6 (https://phytozome.
jgi.doe.gov/pz/portal.html#) and MORUSDB (https://morus.
swu.edu.cn/).

Statistical analyses

Statistical analyses were performed using R software (R Core
Team, 2018). The apparent Km values were calculated by a non-
linear least-squares method with SIGMAPLOT12 (Systat Software
Inc., San Jose, CA, USA).

Data availability statement

Nucleotide sequences coding for FcPT1a (LC369744), FcPT1b
(LC369745), FcPT2a (LC369746) and FcPT2b (LC369747)
and the genomic sequences of PsPT1 (MK205179) and PsPT2
(MK205180) are available in the NCBI database.

Results

Isolation of UDT candidates

All reported plant-derived PT genes for phenolic substrates
belong to the UbiA superfamily (Winkelblech et al., 2015), with
the PTs responsible for plant-specialized metabolism showing
moderate amino acid identities (30–50%) with another group of
UbiA PTs involved in plant primary metabolism (Karamat et al.,
2014; Wang et al., 2014). To search for aromatic PTs in fig, we
performed a homology-based in silico screening using primary
metabolite-related UbiA members in Arabidopsis thaliana as
queries (AtVTE2-1, AtVTE2-2, AtPPT1, AtABC4, AtATG4
and AtCOX10, which participate in the biosynthesis of toco-
pherol, plastoquinone, ubiquinone, phylloquinone, Chl, and
haem a, respectively) (Table S2a) (Winkelblech et al., 2015). A
TBLASTN search performed on an RNA-seq library prepared from
fig fruit latexes yielded three candidate genes, tentatively named
UDT-candidates1–3 (Fig. S3a).

UDT-candidate1 contains a partial PT sequence lacking the
50-terminal region; however, it was complemented based on a

homologous contig (Fr2001904) identified in an RNA-seq of
F. religiosa, another Ficus species accumulating FCs (Singh et al.,
2011), in the OneKP database (Fig. S4). Another contig
(Fr2007013) identified in the F. religiosa RNA-seq allowed the
extension of the 30-UTR sequence of UDT-candidate1 (Fig. S4).
Using the combined sequence information from these three con-
tigs (Fig. S4), two full CDSs were isolated from fig mRNA by
RT-PCR-based cloning, and these CDSs were named FcPT1a
and b. UDT-candidates2 and 3 were found to encode identical
PT genes harbouring a single silent mismatch in their CDSs and
to have highly homologous UTR sequences (Fig. S3). Based on
the sequence of UDT-candidate2, which was longer than that of
UDT-candidate3, two additional CDSs were cloned by the same
RT-PCR approach and named FcPT2a and b.

The nucleotide sequence identities of the two variants of
FcPT1 and of the two variants of FcPT2, including their UTR
regions, were > 98%, with each pair of variants being mapped to
the same site in a fig draft genome by BLASTN (Mori et al., 2017).
FcPT1a and b correspond to nucleotides 9576–12 597 and
9576–12 602, respectively, in a fig genome scaffold (accession
ID: BDEM01000717.1). Both FcPT2a and b correspond to
nucleotides 198 283–200 428 in another scaffold (accession ID:
BDEM01000270.1). These findings indicate that each pair of
variants represents allelic pairs.

Polypeptide structures of FcPTs

Ficus carica prenyltransferase 1 and 2 polypeptides share 51%
amino acid identity, regardless of their variants. TMHMM analysis
predicted that the four polypeptides have multiple transmem-
brane alpha-helices and CHLOROP predicted that the N-terminal
regions of these polypeptides have a transit peptide (Fig. S5a).
Both pairs of polypeptide sequences possessed the typical struc-
tural characteristics of plant aromatic PTs, including Apiaceae
UDTs (Winkelblech et al., 2015). Two aspartate-rich motifs
were observed in FcPT1a and b, whereas FcPT2a and b have an
atypical substitution of a glycine for a glutamine in the first motif
(Fig. S5b). Because the substitution was also observed in their
contigs (UDT-candidates2 and 3; Fig. S3a), they probably repre-
sent a natural variation. A similar substitution in this conserved
sequence was observed in Rhododendron dauricum PT1; its native
gene possesses an alanine at the same position, with replacement
of this alanine by a glutamine reducing catalytic activity (Saeki
et al., 2018). The four proteins were therefore biochemically
characterized.

Characterization of the U6DT activity of FcPT1

To characterize the enzymatic function of FcPTs, their full CDSs
were transiently expressed in N. benthamiana, and the microso-
mal fractions prepared from their leaves were used as crude
enzymes for in vitro assays. Our results showed no enzymatic
reaction products when FcPT2a/b microsomes were incubated
with different substrate combinations, including the pair of
umbelliferone and DMAPP, in the presence of Mg2+ as a cofac-
tor (Fig. S6). By contrast, HPLC analysis of UDT reaction
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mixtures composed of microsomes containing recombinant
FcPT1a/b proteins yielded an enzymatic reaction product con-
comitant with the consumption of umbelliferone (Figs 2a, S6).
This product was identified as DMS by direct comparison of its
retention time and tandem mass spectrometry (MS2) spectrum
with those of a standard molecule (Fig. 2). Moreover, this pro-
duct did not appear in any control incubations (Figs 2a, S7a). In
contrast to Apiaceae U6DTs, which yielded osthenol as a by-pro-
duct (Karamat et al., 2014; Munakata et al., 2016), FcPT1a/b
did not. Because both FcPT1a/b variants yielded the same results,
we focused on FcPT1a in subsequent investigations. The appar-
ent Km values of FcPT1a for umbelliferone and DMAPP were
determined to be 35� 4 and 17� 1 µM, respectively (Fig. S7b),
which is similar to those of parsley PcPT1 (21� 3 µM for
umbelliferone and 80� 10 µM for DMAPP) (Karamat et al.,
2014).

Substrate preference of FcPT1

Substrate specificity of FcPT1a for prenyl acceptors was evaluated
with various aromatic compounds using DMAPP as a prenyl
donor. Incubations with various simple coumarins and FCs
showed that this enzyme recognized umbelliferone and 5-
methoxy-7-hydroxycoumarin (5M7H) as prenyl acceptors (Figs
3a,b, S8). All other simple coumarin/FC derivatives tested with
different substitution patterns were not transformed (Fig. 3a,b).
This clear preference strongly suggests that FcPT1a requires a
hydroxyl moiety on C7 of the coumarin structure, although this
moiety was not sufficient, as 5,7-dihydroxycoumarin was not
transformed (Fig. 3b). This enzyme did not react with other phe-
nolic compounds, including phenylpropanes, flavonoids and
homogentisic acid (Fig. 3a,b).

The specificity of FcPT1a for prenyl donor substrates was also
assessed using geranyl diphosphate, farnesyl diphosphate and
GGPP in the presence of umbelliferone or 5M7H, but we could
not detect any products (Fig. 3c). These in vitro experiments indi-
cated that the recombinant FcPT1a specifically transfers a dimethy-
lallyl moiety to umbelliferone and 5M7H. The enzymatic reaction
product of 5M7H has not been found in fig plants and is thus pre-
sumed to be 6-dimethylallylated 5M7H (Fig. S8c) based on the 6-
specific prenylation of umbelliferone by this enzyme (Fig. 2).

Expression profile of FcPT1

Furanocoumarin contents vary among fig organs (Oliveira et al.,
2009), but no reports have described the distribution of FC
molecules through latexes from fig fruits, petioles and trunks
(Fig. S2), from which comparable RNA-seq datasets were con-
structed (Kitajima et al., 2018). We therefore measured the total
FC contents in these three latex preparations by quantification of
psoralen and bergapten, considering the large majority of FC
derivatives in fig (Oliveira et al., 2009). The total FC contents in
the petiole and trunk latex preparations were 24- and 35-fold
higher, respectively, than those in fig fruit latex (Figs 4, S9), sug-
gesting large variations in FC production by these tissues. Subse-
quent qRT-PCR analysis revealed similar relative levels of FcPT1

expression in these latex preparations (Figs 4, 5), which suggested
that this gene is involved in FC biosynthesis.

Because FcPT1a/b were originally isolated from an RNA-seq
library constructed from fig fruit latexes, we searched for other
UDT candidates in comparable RNA-seq libraries (Kitajima
et al., 2018). A TBLASTN search using FcPT1a/b and six
Arabidopsis UbiA PTs involved in primary metabolism identified
69 contigs that could be classified in the UbiA superfamily
(Table S3). These 69 contigs were found to cluster in three
groups. The first group included 19 contigs, the gene products of
which showed the highest amino acid identities with FcPT1a/b
among the eight earlier-described queries. The second group was
composed of a single contig showing the highest amino acid
identity with AtPPT1 at a moderate level below the threshold set
at 58%, which corresponds to the amino acid identity between
AtPPT1 and its orthologue in Oryza sativa, OsPPT1. These two
groups of 20 contigs were considered as UDT candidates
(Table S3a). The third group included the remaining 49 contigs
and were annotated as orthologues of the primary PTs because
they showed amino acid identities with one of the queries over
the thresholds, set at 63%, 66%, 53%, 76%, and 55% for
VTE2-1, VTE2-2, ABC4, ATG4, and COX10, respectively, as
described for PPT (Table S3b).

The reads per kilobase of exon model per million mapped
reads (RPKM) analysis of the fruit latex indicated that 13 of the
69 contigs (asterisks in Fig. 6a; Table S3a) had low ratios and
may participate in the production of FCs (Fig. 4). All were anno-
tated as U6DT or unknown functions (Table S3a) and belonged
to group 1. These 13 contigs could be split into two subgroups
with high and low RPKM values (Fig. 6b). The high RPKM sub-
group contained seven contigs annotated as U6DT, which
encode FcPT1a/b, partial CDSs almost identical (> 99%) to
FcPT1a/b, and partial CDSs of FcPT1a/b with yet-to-be spliced
introns (highlighted in red in Fig. 6; Table S3a). These in silico
analyses provided further evidence that FcPT1a/b are the most
promising candidates for UDT. The remaining six contigs with
low RPKM values were mapped to two close genomic loci (acces-
sion ID: BDEM01000105.1), one of which contains a full gene
structure. However, its gene product encoded by
36524_c3_g2_i2 is rather divergent (< 55% identity) from
FcPT1 or 2, which is the similar divergence from Moraceae PTs
for other phenolic groups, that is, Morus alba isoliquiritigenin
dimethylallyltransferase (MaIDT) and Cudrania tricuspidata
IDT (CtIDT), both specific to flavonoids, andM. alba oxyresver-
atrol geranyltransferase (MaOGT), specific to stilbenoids (Wang
et al., 2014; Zhong et al., 2018), suggesting its function is differ-
ent from that of UDT. Three other contigs, 31647_c0_g1_i2,
31647_c0_g1_i3, and 37574_c0_g1_i1, showed relatively low
expression ratios for the fruit latex and total expression levels
comparable to FcPT1-related contigs (Fig. 6), but they were all
almost identical (> 99%) to FcPT2a/b.

Subcellular localization of FcPT1

The subcellular localization of FcPT1 in planta was assessed using
both sGFP-chimeric proteins harbouring the first 72 and 70
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amino acids of FcPT1a (FcPT1aTP-sGFP) and FcPT1b
(FcPT1bTP-sGFP), respectively, as the N-terminal regions of the
FcPT1 variants show uneven sequence divergence (Fig. S5b).
The proteins were transiently expressed in N. benthamiana leaves
by agroinfiltration, and GFP fluorescence was monitored by con-
focal microscopy. The GFP signal for both chimeric proteins
localized to chloroplasts (Fig. 7). These results suggest that
FcPT1a/b localize to plastids, which is consistent with the synthe-
sis of prenyl donors for UbiA PTs, including DMAPP, via the
MEP pathway (Akashi et al., 2009; Saeki et al., 2018).

Phylogenetic analysis of FC biosynthetic enzymes

A phylogenetic tree was constructed using UbiA PT polypep-
tides, including FcPT1a and Apiaceae UDTs (PcPT1, PsPT1
and PsPT2). In the tree, primary metabolite-related PTs are
grouped by their physiological/biochemical functions, with PTs
derived from different plant species being grouped into one clade.
By contrast, specialized metabolite-related UbiA PTs generated
the other clades close to the VTE2-1, VTE2-2 or PPT clade.
These findings appear to reflect an ancestral gene function
(Fig. 8). In this analysis, three Apiaceae UDTs are close to the
VTE2-1 clade, whereas FcPT1a is included in a VTE2-2-related

clade. Interestingly, this second cluster gathered other specialized
Moraceae PTs regardless of their different enzymatic functions.
This Moraceae clade is also next to the clade of specialized PTs
from Cannabaceae (Tsurumaru et al., 2012; Li et al., 2015)
(Fig. 8). Both Cannabaceae and Moraceae are classified as Rosales
(Chase et al., 2016).

Phylogenetic analysis was completed by comparing the
genomic sequences of Moraceae and Apiaceae UDTs. We first
compared the gene sequences of VTE2-1s and VTE2-2s in a
broad taxonomical range from chlorophytes to angiosperms,
including species from these two families (fig and Daucus
carota (carrot)) (Fig. 8). Among these genes, VTE2-1/2-2
from A. thaliana and VTE2-2 from Chlamydomonas reinhardtii
were already functionally characterized (Sadre et al., 2006).
Except for the 50-terminal regions of these genes containing
divergent transit peptides, exon structures of both VTE2-1s
and VTE2-2s were highly conserved over angiosperms (Figs 9,
S10a,b). However, the total number and length of exons
clearly differ between the conserved structures of the two PT
groups (Figs 9, S10a,b), which is exemplified by the differ-
ence in the position of the two aspartate-rich motifs. The
lengths of introns in each gene are not well conserved in
either PT group (Fig. S10c,d).
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Fig. 2 Liquid chromatography-MS analysis of
the umbelliferone dimethylallyltransferase
(UDT) reaction mixture of Ficus carica
prenyltransferase 1 (FcPT1). (a) Ultraviolet
chromatograms of UDT reaction mixtures of
FcPT1a/b. Chromatograms for FcPT1a,
FcPT1b and FcPT1aTP-sGFP as a negative
control are shown at 330 nm on a
comparable scale. Microsomes containing
c. 0.3 µg of total proteins were incubated
with 50 µM umbelliferone and 200 µM
dimethylallyl diphosphate (DMAPP) in the
presence of 10mMMgCl2. (b) Tandem mass
spectrometry (MS2) spectra of enzymatic
reaction products of FcPT1a in the positive
ion mode. The loss of 56 mass units is a result
of a specific fragmentation to dimethylallyl
moieties attached to aromatic rings via C-C
bonds (Simons et al., 2009).
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The exon structures of VTE2-1s and VTE2-2s were compared
with those of PsPT1/2 (Munakata et al., 2016) and FcPT1a. This
comparison revealed that Apiaceae UDTs and FcPT1 possess con-
served exon structures of VTE2-1s and VTE2-2s, respectively
(Figs 9, S10). These phylogenetic tree and exon structures
strongly suggest that Apiaceae and Moraceae plants recruited
UDT from different ancestral genes, that is, VTE2-1 and VTE2-
2, respectively.

A broader view of the FC pathway was provided by in silico
analysis of genes encoding enzymes responsible for the formation
of umbelliferone, upstream of the prenylation step (Fig. 1). In
angiosperms, including FC-producing species in Apiaceae and
Rutaceae, this reaction is performed by a p-coumaroyl CoA 20-
hydroxylase (C20H) belonging to the DOXC30 group in the 2-
oxoglutarate-dependent dioxygenase superfamily (Roselli et al.,
2017; Vialart et al., 2012; Kawai et al., 2014). Phylogenetic com-
parisons of putative fig C20H proteins previously screened in the
latex RNA-seq libraries (Kawai et al., 2014; Kitajima et al., 2018)

showed the clustering of them in the DOXC30 clade (Fig. S11).
In contrast to the UDT step, it is thus possible that the C20H
reaction in Moraceae is catalysed by enzymes orthologous to
DOXC30s in other angiosperms.

Recently, a new gene encoding an enzyme catalysing trans-cis
isomerization and lactonization of o-hydroxycinnamoyl-CoA
(Vanholme et al., 2019) was reported, which serves as an alterna-
tive route to the nonenzymatic process in coumarin skeleton for-
mation (Fig. 1). This A. thaliana COUMARIN SYNTHASE
(COSY) is responsible for the formation of scopoletin and
esculetin (Vanholme et al., 2019), neither of which is demon-
strated to be incorporated into FCs in plants. However, this
enzyme might contribute to umbelliferone synthesis in other
species. An in vitro experiment demonstrated that AtCOSY is
able to synthesize this FC precursor from 2,4-dihydroxyci-
namoyl-CoA (Vanholme et al., 2019). The homologous genes of
AtCOSY are conserved in various angiosperm taxa, including
FC-rich species, that is, fig, Angelica archangelica (Apiaceae),
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Fig. 3 Substrate specificity of Ficus carica
prenyltransferase 1a (FcPT1a). (a) Aromatic
substrates tested. (b) Prenyl acceptor
preference in use of dimethylallyl
diphosphate (DMAPP) as a prenyl donor. (c)
Prenyl donor preference in use of
umbelliferone (Umb, left) or 5-methoxy-7-
hydroxycoumarin (5M7H, right) as a
cosubstrate. In (c), 100 µM of prenyl
diphosphates were incubated with the other
components. Values are expressed as the
means� SE (n = 3 each). Dimethylallylated
5M7H (P2) was quantified as equivalent to
5M7H. ND, not detected. GPP, geranyl
diphosphate; FPP, farnesyl diphosphate;
GGPP, geranylgeranyl diphosphate.
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Bituminaria bituminosa (Fabaceae) and Citrus9 paradisi
(Rutaceae) (Murray et al., 1982) (Fig. S12). Future studies
should include functional characterization of these dioxygenases
and COSY enzymes.

Discussion

This study identified FcPT1, a U6DT involved in FC biosynthe-
sis in fig latexes. This enzyme belongs to the UbiA superfamily
and possesses characteristics typical of PT members accepting
phenolic substrates, that is, multiple transmembrane regions, two
aspartate-rich motifs, and an N-terminal transit peptide (Winkel-
blech et al., 2015). Enzymatic characterization showed that
FcPT1 has narrow substrate preferences for prenyl donors and
acceptors, similar to Apiaceae UDTs (Karamat et al., 2014;
Munakata et al., 2016). These findings confirmed that this

U6DT is responsible for the enzymatic transformation of umbel-
liferone to DMS in figs. Interestingly, FcPT1 can prenylate
5M7H as much as umbelliferone in vitro, supporting the previ-
ously advanced hypothesis that another route leads to the produc-
tion of FCs. In the fig FC pathway, hydroxylation at the C5
position followed by O-methylation, not only for psoralen but
also for marmesin, may lead to a 5-O-methoxy moiety of ber-
gapten (Murray et al., 1982), suggesting a grid-type biosynthetic
pathway in this plant. Our biochemical data suggest that the
transformation of umbelliferone into 5M7H before prenylation
could be an alternative route for the formation of bergapten in
fig. However, this metabolic route may be somewhat minor, as
tracer experiments showed that 5M7H is less efficiently incorpo-
rated into bergapten than umbelliferone (Marciani et al., 1974).

Unlike similarities of both polypeptide sequence and enzy-
matic properties of UDTs in fig and Apiaceae species, our phylo-
genetic analysis together with the comparison of gene structures
strongly suggests that FcPT1 and Apiaceae UDTs evolved from
different ancestors. As FCs were isolated from phylogenetically
distant plants, two alternative assumptions concerning the emer-
gence of the FC pathway were suggested: either it appeared in a
common ancestor and then disappeared during evolution, or it
appeared independently in the different taxa. If referring to the
first hypothesis, this possibility would mean that both VTE2-1-
and VTE2-2-related UDTs were present in a common ancestor
followed by disappearance of a gene during evolution. This
hypothesis sounds unlikely, as plant species harbouring a set of
secondary metabolic UbiA PTs related to multiple primary
metabolic UbiA PTs (e.g. from both VTE2-1 and VTE2-2) have
not been reported to date (Li et al., 2015; Munakata et al., 2016;
Yoneyama et al., 2016). Our phylogenetic analysis also showed
that despite diverse enzymatic functions, all of the reported UbiA
PTs involved in secondary metabolism from Rosales (including
Moraceae and Cannabaceae) are clustered close to the VTE2-2
clade, whereas those from Fabales are close to the VTE2-1 clade
(Wang et al., 2014; Zhong et al., 2018). Rosales and Fabales are
taxonomic neighbours (Fig. S1), suggesting that gene duplication
and neofunctionalization events of VTE2-2 and VTE2-1 after the
divergence between these two taxa have led to taxon-specific

0

20

40

0

20

40

0
40
80

120

0
40
80

120

0 10 20 30 40
Retention time (min)

0
40
80

120

m
AU

(3
00

 n
m

)

Psoralen standard

Bergapten standard

Trunk

Petiole

Fruit

O OO

OCH3

O OO

0

3

6

9

12

FC
 c

on
te

nt
s (

nm
ol

m
g–1

la
te

x)
(a)

(b)

Fig. 4 Furanocoumarin (FC) contents in latexes collected from different fig
organs. Ultraviolet chromatograms (a) and total FC contents calculated by
quantification of psoralen and bergapten (b) of methanol extracts of
latexes collected from different fig organs. Values are means� SE (n = 5
each). Letters indicate statistical significance (P < 0.05) by the Steel–Dwass
test.

0

0.25

0.5

0.75

1

1.25

noisserpxe evitaleR (F
cP
T1

Fc
Ac
tin

–1
)
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Fig. 6 Reads per kilobase of exon model per million mapped reads (RPKM)-based organ-specific abundance of contigs assigned to the UbiA superfamily.
Contigs assigned to the UbiA superfamily were listed according to RPKM ratios for fruit latex (RPKM for fruit latex/ total RPKM for the three latexes) (a)
and total RPKM (b). Asterisks indicate low ratios for fruit latex. Contigs predicted to possess unknown functions or umbelliferone 6-dimethylallyltransferase
(U6DT) in Supporting information Table S3 are highlighted in orange or red letters, respectively. RPKMs (means� SE; n = 3 each) are shown (Kitajima
et al., 2018). Three contigs (31647_c0_g1_i2, 31647_c0_g1_i3 and 37574_c0_gi_i1) correspond to Ficus carica prenyltransferase 2a/b.
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metabolic pathways in Rosales and Fabales, respectively. There-
fore, UDTs were probably independently acquired between
Moraceae and Apiaceae in a convergent evolutionary manner,
supporting the independent acquisition of the FC pathway
between the two families, as stated by the second hypothesis. This
evolutionary trajectory is in line with previous reports describing
the convergent evolution of flavonoid and stilbene PTs in
Moraceae and Fabaceae (Wang et al., 2014; Zhong et al., 2018)
and suggests that Moraceae developed the linear FC pathway
independently of Fabaceae and probably also from Rutaceae, the
other major FC-producing families (Murray et al., 1982).

In addition to the four major FC-producing taxa, FCs were
found in 11 families classified into seven plant orders (Murray
et al., 1982). Owing to the development of analytical tools, FCs
have been isolated from other angiosperms, such as Dioscorea
communis (Discoreales) (Zerargui et al., 2015), as well as from
other plants outside angiosperms, such as Pseudolarix kaempferi

(Pinales, Gymnosperms) (Cai et al., 2012) and Selaginella
moellendorffii (Selaginellales) (Weng & Noel, 2013) in the last
decade. Future progress in FC research may find that the FC
pathway is widely distributed throughout the plant kingdom by
convergent evolutionary processes.

Several hypotheses may explain the independent appearance of
the pathway in various plant taxa. The first hypothesis is related
to the toxicity of FCs in a broad range of organisms. Under UV-
A irradiation, linear FC molecules intercalate into double-
stranded DNAs by covalent cross-linking to pyrimidine bases,
potentially inhibiting DNA replication and transcription (Kita-
mura et al., 2005; Bourgaud et al., 2006). Linear FCs can also
inactivate several P450 enzymes, one of the most ubiquitous
enzyme families among organisms (Lin et al., 2012; Gravot et al.,
2004). These toxic activities were reported to be effective against
bacteria, fungi, plants, humans and even DNA viruses (Murray
et al., 1982). Thus, in response to stresses, unrelated plant taxa
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Fig. 7 Microscopic observation of Ficus
carica prenyltransferase 1 transit peptide
(FcPT1TP)-synthetic green fluorescent
protein (sGFP) expressed in Nicotiana
benthamiana epidermal cells. (a–c) sGFP (a),
FcPT1aTP-sGFP (b), and FcPT1bTP-sGFP (c)
were transiently expressed in
N. benthamiana leaves by agroinfiltration.
Water infiltrated into the leaves was the
negative control (d). Rows from the top
indicate images of GFP signalling, Chl
autofluorescence, differential interference
contrast (DIC) images, and merged images.
Enlarged images (e) are also shown for
FcPT1aTP-sGFP (b) and FcPT1b-sGFP (c).
Bars; 20 µm (a–d); 5 µm (e).
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may have independently developed a linear FC pathway. In fig
trees, FCs were more concentrated in latexes of trunk and petioles
than those of fruits, with FC contents also being reported to be
considerably higher in leaves than in fruits (Oliveira et al., 2009).
By contrast, FC contents are higher in young fruits than in other

organs of R. graveolens (Milesi et al., 2001), suggesting that inde-
pendently evolved FCs may differ in their distribution among
plant tissues. This difference may be related to differences in
plant defence strategy among unrelated taxonomical groups. Fur-
thermore, FC production in Apiaceae species is induced by both
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Fig. 8 Phylogenetic relationship between
Ficus carica prenyltransferase 1a (FcPT1a)
and Apiaceae umbelliferone
dimethylallyltransferases (UDTs) in the UbiA
superfamily. A neighbour-joining
phylogenetic tree of UbiA prenyltransferase
(PT) polypeptides was constructed. The
results of 1000 bootstrap tests (maximum
100) are shown for nodes generating clades
and more upstream nodes. Clades of primary
and specialized metabolic pathways are
coloured grey, and others depend on their
estimated ancestor enzymes (orange, VTE2-1
origin; green, VTE2-2 origin; blue, PPT
origin). Their aromatic substrates are shown
in parentheses, and UDTs are highlighted in
bold and larger font. The bar represents an
amino acid substitution rate per site of 0.2.
Abbreviations for plant names and enzyme
names are given together with their
accession numbers in Supporting Information
Table S2.
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insect herbivores and fungal infection, suggesting that plants have
taken advantage of the toxicities of FCs (Zangerl, 1990; Sch-
melzer et al., 1989).

The second hypothesis that may explain the convergence of
this pathway is associated with the small number of biosynthetic
reactions required to produce these toxic molecules. Our in silico
analyses of the DOXC30 subfamily and COSY homologues sug-
gest that the Moraceae and Apiaceae lineages inherited umbellif-
erone synthase from their common ancestor. Because psoralen is
sufficient to cause both genotoxicity and mechanism-based inhi-
bition of P450 enzymes (Kitamura et al., 2005; Gravot et al.,
2004), plants required only three enzymes, U6DT, MS, and PS,
to produce this efficient defence molecule (Murray et al., 1982).
The simplicity of this pathway may have led to its appearance in
different taxa. In comparison, complex specialized metabolic
pathways requiring more than a dozen biosynthetic steps, such as
those involving the biosyntheses of paclitaxel and vinblastine, are

more likely to be monophyletic in plants (Croteau et al., 2006;
Caputi et al., 2018).

The ability of several unrelated plant species to independently
produce a particular metabolite has been reported for various
groups of metabolites, including alkaloids and terpenes (Picher-
sky & Lewinsohn, 2011). The identity, or parallelism, of the pro-
cesses involved in convergent evolution varies on a case-by-case
basis. One example of low parallelism is the synthesis of
aminobenzoic acid in corn (Poaceae) and Vitis labrusca
(Vitaceae). Both plants produce methyl anthranilate by a single
reaction but start with different substrates and utilize distinct
enzyme families (Pichersky & Lewinsohn, 2011). By contrast, an
example of high parallelism is the synthesis of caffeine in coffee
and tea, which requires multiple methylation reactions but differs
only slightly between these species. Xanthosine, a common pre-
cursor, is transformed through three consecutive N-methyltrans-
ferase (N-MT) reactions, which are biochemically similar in both

(a)

(b) Fig. 9 Exon organization of umbelliferone

dimethylallyltransferases (UDTs) and their
relative prenyltransferase (PT) genes. (a, b)
Exon-intron structures of Apiaceae UDTs (a)
and Ficus carica PT1 (FcPT1) (b) along with
related PTmembers. Exons containing the
first and second aspartate-rich motifs are
numbered and shown in black and grey,
respectively. Bar, 100 bp. The genomic
sequences of Daucus carota VTE2-1
(DcVTE2-1) and FcVTE2-1 and FcVTE2-2
were searched by TBLASTN analysis of the
whole-genome shotgun contigs in NCBI
using Arabidopsis thaliana VTE2-1 (AtVTE2-
1) and AtVTE2-2 as queries, respectively. The
genomic sequence ofMorus notabilis

isoliquiritigenin DT (MnIDT), which share
98% identity withMorus alba IDT (MaIDT)
in coding sequence, was found in MorusDB.
Detailed information for PT genes is shown in
Supporting Information Table S4. The exons
of FcVTE2-1 are numbered in reference to
those of AtVTE2-1.
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plants (Huang et al., 2016). The N-MT reactions in coffee are
catalysed by three different enzymes specifically dedicated to indi-
vidual steps, whereas only two N-MT enzymes are required in tea
(Huang et al., 2016). A phylogenetic analysis revealed a clear
sequence divergence between the enzymes isolated from these
plants (Huang et al., 2016). Other plants that have indepen-
dently evolved a caffeine production pathway include cacao,
guarana and orange. In all of these plant taxa, the enzymes
recruited for the synthesis of caffeine are N-MTs belonging to
the SABATH superfamily (Huang et al., 2016).

The biosynthesis of FCs probably includes a similar high paral-
lelism. In contrast to the caffeine pathway, however, the FC path-
way is more complicated at the molecular level as a result of the
involvement of unrelated enzyme families, such as the UbiA,
P450 and SABATH superfamilies (Hehmann et al., 2004; Larbat
et al., 2007; Karamat et al., 2014). Similar high genetic complex-
ity is observed in the convergent evolution of the biosynthetic
pathways of pyrrolizidine alkaloids (Ober & Kaltenegger, 2009)
and benzoxazinoids (Dick et al., 2012). The genetic simplicity or
complexity of a pathway may be associated with its rapidity of
appearance during plant evolution. For example, Huang and col-
laborators used a computational approach to resurrect the ances-
tral N-MT sequence located at the phylogenetic branching point
between two N-MTs specifically involved in the caffeine pathway
of orange. This ancestral enzyme could be neofunctionalized to
become almost equivalent to the present two N-MTs by different
single mutations (Huang et al., 2016). Such a reconstruction
approach may enable us to assume the rapidity of construction of
the FC pathway in a plant taxon by the mutations necessary for
neofunctionalization of reconstructed ancestors towards FC-spe-
cialized enzymes. The rapidity, together with genetic simplicity
and a minimization of the number of involved enzymes, can
facilitate the independent emergence of pathways involved in the
biosynthesis of the same molecules in different plant species.

Along with constructing biosynthetic pathways, plants must
frequently develop mechanisms of resistance to their own active
compounds. This strategy may be similar to those developed for
sequestering the cytosol and nucleus, which are important for
plant acquisition of energy and reproduction. Apiaceae and
Rutaceae species export a large quantity of FC molecules into
hydrophobic extracellular compartments, called oil ducts and oil
cavities, respectively (Reinold & Hahlbrock, 1997; Voo et al.,
2012). The strategy differs significantly from those of fig latexes,
which are living cells producing high amounts of FCs (9� 2 mM
in fig trunk latexes, with 1 µl of fig latex weighing 1 mg), roughly
comparable to those in oil cavities in Rutaceae (24–30 mM in
grapefruit oil cavities) (Voo et al., 2012). The high intracellular
accumulation of FCs suggests that currently unrevealed fig-speci-
fic mechanisms circumvent the self-toxicity of endogenous FC
molecules.

In conclusion, our phylogenetic and gene structure analyses
support the convergent evolution of FCs in plants by comparing
UDTs in Moraceae and Apiaceae. Similar evolutionary strategies
may be employed in other plant taxa, ranging from angiosperms
to Selaginellales. Further investigations into FC metabolism in
different unrelated plant taxa are necessary to provide more

comprehensive insights into the convergence of plant-specialized
metabolic pathways, as well as into divergent and convergent
strategies developed by plants to coexist with the self-toxicities of
these convergently acquired metabolites.
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